CookiesWe use cookies to enhance your experience and the functionality of our website. By continuing to browse, you are agreeing to our use of cookies. Learn More

CookiesWe use cookies on our website. By continuing to browse, you are agreeing to our use of cookies. Learn More

Love Unleashed: The Magic of Collective Hearts in Action An In-Person HeartMath/Global Coherence Retreat in Santa Cruz, CA Learn More

Research Library
Publication

Practice Effects of a Breathing Technique on Pilots’ Cognitive and Stress Associated Heart Rate Variability During Flight Operations

    • Published: 2024
    • Jingyi Zhang1, Wen-chin li1, Graham Braithwaite1, and James Blundell1
    • Published by Informa UK Limited, trading as Taylor & Francis Group, 2024; Vol. 27, No. 1, 2361253. DOI: https://doi.org/10.1080/10253890.2024.2361253.1. Safety and Accident Investigation Centre, Cranfield University, Bedfordshire, UK.
    • Download the complete paper, click here.

Abstract

Commercial pilots endure multiple stressors in their daily and occupational lives which are detrimental to psychological well-being and cognitive functioning. The Quick coherence technique (QCT) is an effective intervention tool to improve stress resilience and psychophysiological balance based on a five-minute paced breathing exercise with heart rate variability (HRV) biofeedback. The current research reports on the application of QCT training within an international airline to improve commercial pilots’ psychological health and support cognitive functions. Forty-four commercial pilots volunteered in a one-month training programme to practise self-regulated QCT in day-to-day life and flight operations. Pilots’ stress index, HRV time-domain and frequency-domain parameters were collected to examine the influence of QCT practice on the stress resilience process. The results demonstrated that the QCT improved psychophysiological indicators associated with stress resilience and cognitive functions, in both day-to-day life and flight operation settings. HRV fluctuations, as measured through changes in RMSSD and LF/HF, revealed that the resilience processes were primarily controlled by the sympathetic nervous system activities that are important in promoting pilots’ energy mobilization and cognitive functions, thus QCT has huge potential in facilitating flight performance and aviation safety. These findings provide scientific evidence for implementing QCT as an effective mental support programme and controlled rest strategy to improve pilots’ psychological health, stress management, and operational performance.