CookiesWe use cookies to enhance your experience and the functionality of our website. By continuing to browse, you are agreeing to our use of cookies. Learn More

CookiesWe use cookies on our website. By continuing to browse, you are agreeing to our use of cookies. Learn More

Holiday Sale! Enjoy 25% Off All Products in Our Store Free Continental U.S. Shipping on Orders Over $49! Shop Now

Research Library
Publication

Correlation Between Changes in Local Earth's Magnetic Field and Cases of Acute Myocardial Infarction

    • Published: 2018 PR
    • Gediminas Jaruševiĉius, Tautvydas Rugelis, Rollin McCraty, Mantas Landauskas, Kristina Berškienė, and Alfonsas Vainoras
    • International Journal of Environmental Research and Public Health 2018, 15, 399.
    • Download the complete paper, click here.

Abstract

The impact of changes in the geomagnetic field on the human body remains the subject of studies across the world, yet there is no consensus. Current studies are observing effects that require further work by researchers in order to find out the mechanisms that would allow a proper assessment of the correlations between the Earth‘s magnetic field variations and changes in human organisms. The main purpose of this study was to investigate possible correlations between the strength of time-varying aspects of the local Earth’s magnetic field and incidence of myocardial infarctions. Study participants included 435 males and 268 females who had diagnosis of myocardial infarction during the period of 1 January 2016 to 31 December 2016 and attended the Department of Cardiology at the Hospital of Lithuanian University of Health Sciences (LUHS), Kauno klinikos. Time varying magnetic field data was collected at the magnetometer site located in Lithuania. After mathematical analysis, the results support the hypothesis that the Earth’s magnetic field has a relationship between the number of acute myocardial infarction with ST segment elevation (STEMI) cases per week and the average weekly geomagnetic field strength in different frequency ranges. Correlations varied in different age groups as well as in males and females, which may indicate diverse organism sensitivity to the Earth’s magnetic field.